A synthetic prestin reveals protein domains and molecular operation of outer hair cell piezoelectricity.
نویسندگان
چکیده
Prestin, a transporter-like protein of the SLC26A family, acts as a piezoelectric transducer that mediates the fast electromotility of outer hair cells required for cochlear amplification and auditory acuity in mammals. Non-mammalian prestin orthologues are anion transporters without piezoelectric activity. Here, we generated synthetic prestin (SynPres), a chimera of mammalian and non-mammalian prestin exhibiting both, piezoelectric properties and anion transport. SynPres delineates two distinct domains in the protein's transmembrane core that are necessary and sufficient for generating electromotility and associated non-linear charge movement (NLC). Functional analysis of SynPres showed that the amplitude of NLC and hence electromotility are determined by the transport of monovalent anions. Thus, prestin-mediated electromotility is a dual-step process: transport of anions by an alternate access cycle, followed by an anion-dependent transition generating electromotility. The findings define structural and functional determinants of prestin's piezoelectric activity and indicate that the electromechanical process evolved from the ancestral transport mechanism.
منابع مشابه
Tuning of the outer hair cell motor by membrane cholesterol.
Cholesterol affects diverse biological processes, in many cases by modulating the function of integral membrane proteins. We observed that alterations of cochlear cholesterol modulate hearing in mice. Mammalian hearing is powered by outer hair cell (OHC) electromotility, a membrane-based motor mechanism that resides in the OHC lateral wall. We show that membrane cholesterol decreases during mat...
متن کاملAnalysis of the oligomeric structure of the motor protein prestin.
Prestin, a member of the solute carrier family 26, is expressed in the basolateral membrane of outer hair cells. This protein provides the molecular basis for outer hair cell somatic electromotility, which is crucial for the frequency selectivity and sensitivity of mammalian hearing. It has long been known that there are abundantly expressed approximately 11-nM protein particles present in the ...
متن کاملMembrane thickness sensitivity of prestin orthologs: the evolution of a piezoelectric protein.
How proteins evolve new functionality is an important question in biology; prestin (SLC26A5) is a case in point. Prestin drives outer hair cell somatic motility and amplifies mechanical vibrations in the mammalian cochlea. The motility of mammalian prestin is analogous to piezoelectricity, in which charge transfer is coupled to changes in membrane area occupied by the protein. Intriguingly, non...
متن کاملDielectric Properties of Live Yeast Cells Expressed with the Mo - tor Protein
Submitted for the MAR05 Meeting of The American Physical Society Dielectric Properties of Live Yeast Cells Expressed with the Motor Protein Prestin JOHN MILLER, DHARMAKEERTHI NAWARATHNA, DAVID WARMFLASH, University of Houston, FRED PEREIRA, WILLIAM BROWNELL, Baylor College of Medicine — We report on the linear and nonlinear dielectric properties of budding yeast (S. cerevisiae) cells, one strai...
متن کاملModeling Electrically Active Viscoelastic Membranes
The membrane protein prestin is native to the cochlear outer hair cell that is crucial to the ear's amplification and frequency selectivity throughout the whole acoustic frequency range. The outer hair cell exhibits interrelated dimensional changes, force generation, and electric charge transfer. Cells transfected with prestin acquire unique active properties similar to those in the native cell...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The EMBO journal
دوره 30 14 شماره
صفحات -
تاریخ انتشار 2011